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ABSTRACT

A general model for the nonlinear motion of a one dimensional, finite,

homogeneous, viscoelastic body is developed and analysed by an energy

method. It is shown that under physically reasonable conditions the nonlinear

boundary, initial value problem has a unique, smooth solution (global in

time), provided the given data are sufficiently "small" and smooth; moreover,

the solution and its derivatives of first and second order decay to zero as

t + -. Various modifications and generalizations, including two and three

dimensional problems, are also discussed.
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SIGNIFICANCE AND EXPLANATION

In nonlinear systems of "hyperbolic" type, characteristic speeds are not
constant so that weak waves are amplified and smooth solutions may blow up in
finite time due to the formation of shock waves. It is interesting to
consider situations where this destabilizing mechanism coexists (and thus
competes) with dissipation.

In certain cases (e.g., viscosity of the rate type) dissipation is so
powerful that waves cannot break and solutions remain globally smooth. A more
interesting situation arises when the amplification and decay mechanisms have
comparable power so that the outcome of their confrontation cannot be
predicted at the outset. Elementary dimensional considerations indicate that
breaking of waves develops on a time scale inversely proportional to wave
amplitude while dissipation proceeds at a roughly constant time scale. It
should thus be expected that dissipation prevails and waves do not break when
the initial data are "small". Results of this type were obtained by T. Nishida
for the quasilinear wave equation with first-order frictional damping for
sufficiently smooth and small initial displacements and initial velocities.

In this paper we develop and study a general nonlinear model for the
motion of a one dimensional, finite, homogeneous body. Here the dissipation
mechanism which is induced by memory effects of the viscoelastic materials
(stress-strain relaxation function - the stress is a nonlinear functional
rather than a function of the strain) is different and more subtle. Using
elementary energy methods, which are combined with frequency domain techniques
for nonlinear Volterra equations, we show that under physically reasonable
conditions on the stress-strain relaxation function, the known history of the
displacement, the nonlinearities of the model, and on the assigned external
body force, the boundary-history value problem (1.9), (1.18) in the text which*1 describes the model has a unique, smooth solution (global in time), provided
the given data (history and external body force) are sufficiently smooth and
"small". Moreover, we also show that the solution and its spacial and time
derivatives of first and second order decay to zero as t + W. Various
modifications and generalizations of the model, including two and three
dimensional problems, are also considered.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.



A NONLINEAR HYPERBOLIC VOLTERRA EQUATION IN VISCOELASTICITY

C. M. Dafermos and J. A. Nohel

1. Introduction. In nonlinear systems of "hyperbolic" type, characteristic speeds

are not constant so that weak waves are amplified and smooth solutions may blow up

in finite time due to the formation of shock waves. It would be interesting to

consider situations where this destabilizing mechanism coexists (and thus competes)

with dissipation.

In certain cases (e.g., viscosity of the rate type) dissipation is so powerful

that waves cannot break and solutions remain globally smooth. A more interesting

situation arises when the amplification and decay mechanisms have comparable power

so that the outcome of their confrontation cannot be predicted at the outset.

Elementary dimensional considerations indicate that breaking of waves develops on a

time scale inversely proportional to wave amplitude while dissipation proceeds at a

roughly constant time scale. It should thus be expected that dissipation prevails

and waves do not break when the initial data are "small". Results of this type for

quasilinear wave equations with frictional damping were first obtained by Nishida

[1] and, subsequently, by Matsumura [2], who uses methodology that goes back to

Schauder [3]. The more delicate situation of thermal damping (one dimensional

thermoelasticity) is discussed in Slemrod [4].

A different, subtler type of dissipation mechanism is induced by memory effects

and arises in nonlinear viscoelasticity. A simple, one dimensional, model

corresponds to the constitutive relation

t
* (1.1) a(t,x) = o(e(t,x)) + f a'(t - T)*(e(T,x))dT
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where a is the stress, e the strain, a the relaxation function with ' : d/dt,

and ,, 4 assigned constitutive functions. We normalize the relaxation function so

that a(-) = 0. When the reference configuration is a natural state,

;(0) = 4)(0) = 0. Experience indicates that o(e), f(e), as well as the

equilibrium stress

(1.2) X(e) df p(e) - a(0)4(e)

are increasing functions of e, at least near equilibrium (e small). Moreover, the

effect of viscosity is dissipative. To express mathematically the above physical

requirements, we impose upon a(t), p(e), (e) and x(e) the following assumptions:

(1.3) a(t) e W2'1 (0,-), a(t) is strongly positive definite on [0,-)

(1.4) p(e) e C 3 "0 (0) 0 0, '(0) > 0

(1.5) 4(e) e C 3 (-= ), 1 (0) 0, V'(0) > 0

(1.6) X'(0) = P'(0) - a(0)1P'(0) > 0

Assumption (1.3), which requires that a(t) - a exp(-t) be a positive definite

kernel on [0,-) for some a > 0, expresses the dissipative character of

viscosity. Smooth, integrable, nonincreasing, convex relaxation functions, e.g.,

K

(1.7) a(t) = k vkexp(-ukt), Vk > 0, 1k > 0
k=1

which are commonly employed in the applications of the theory of viscoelasticity,

satisfy (1.3).

It is often convenient to express a, given by (1.1), in terms of equilibrium

stress, namely (integrate (1.1) by parts and use (1.2)),

t
(1.8) a(t,x) = x(e(t,x)) + f a(t - T)4(e(T,x)) dT.

We now consider a homogeneous, one dimensional body (string or bar) with

reference configuration [0,1] of density p = I (for simplicity) and constitutive

relation (1.1) which is moving under the action of an assigned body force g(t,x),

-2-
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- < t < m, 0 4 x < 1. We let u(t,x) denote the displacement of particle x at

time t in which case the strain is e(t,x) = ux(t,x). Thus the equation of motion

PUtt = ax + pg here takes the form

t
(1.9) u = (ux) x + f a'(t - T)(U x) xdT + g, < t < -, 0 4 x 4 1

-0

or, if one uses representation (1.8) for the stress,

t
(1.10) utt = X(ux ) x + f a(t - T)Ux)TxdT + g, < t < 0, 0 4 x 4 1

The history of the motion of the body up to time t = 0 is assumed known, i.e.,

(1.11) u(t,x) = v(t,x), -< < t 4 0, 0 4 x 4 1

where v(t,x) is a given function which satisfies equation (1.9) together with

appropriate boundary conditions, for t 4 0. Our task is to determine a smooth

extension u(t,x) of v(t,x) on (- ,-) x 10,1] which satisfies (1.9) together

with assigned boundary conditions, for -A < t < .

Upon setting

0
(1.12) h = f a'(t - T)*(v ) dT + g, t O 0, 0 4 x ' 1Xx

(1.13) uo(x) = v(Ox), ul(x) - vt(O,x), 0 ' x ' 1

the history-value problem (1.9), (1.11) reduces to the initial-value problem

t

(1.14) u V(u ) + f a'(t - T)*(u ) dT + h, 0 4 t < 0, 0 ' x ' 1utt x x 0x x

(1.15) u(Ox) - uo(x), ut(O,x) - ul(x), 0 ef x ' 1

Conversely, (1.14), (1.15) can be reduced to (1.9), (1.11) by constructing a func-

tion v(t,x) on (-4*,0] x [0,1] which satisfies v(O,x) = UO(x), vt(Ox) =u(x),

-3-



I tt (0,x)-v(u 0x)x+h(O,x) , 0 4 x 4 1,

(1.16) (Ox)"(u )u u +V'(u )u +a'( Oxi tOtt0x="Ux)UOxx lx+ OUx)Ulxx •)d)+ 0,) 1,

together with appropriate boundary conditions, for t 4 0, and then defining

g(t,x) on (-,-) x [0,1] by

t
v - ip(v ) - f a'(t-r)*(v ) dT, t 0 O, 0 < x 4 1

(1.17) g(t,x) = 0
(h- f a'(t-T)*(v ) dT, t )0, 0 x 4 1.

-xx

The purpose of (1.16) is to ensure that g(t,x), as defined by (1.17), has the

smoothness properties, across t - 0, which will be required below in the existence

theorem.

For the special case *(e) v(e) variants of existence theorems for (1.14),

(1.15) were established by MacCamy [51, Dafermos and Nohel [6] and Staffans [7].

The assumption 1 P allows one to invert the linear Volterra integral operator on

the right-hand side of (1.14) and thus express p(ux)x  in terms of utt - h

through an inverse Volterra integral operator using the resolvent kernel associated

with a'. One may then transfer time derivatives from utt to the resolvent kernel

via integration by parts. This procedure reveals the instantaneous character of

dissipation and, at the same time, renders the memory term linear and milder, thus

simplifying the analysis considerably. On the other hand, the above approach is
somewhat artificial: By inverting the right-hand side of (1.14), one loses sight of

the original equation and of the physical interpretation of the derived a priori

estimates. More importantly, the physical appropriateness of the restriction

- is by no means clear.

Remark: The present normalization of the kernel a with a(-) - 0 is different

from that in the existing literature (see [5], [6], [7]). The reader should note

a', not a, enters the constitutive relation (1.1) as well as the equation of

-4-



motion (1.9). The present normalization is more convenient for technical reasons;

for, the equivalent form (1.8) of the constitutive equation in which a (rather

than a') enters, and the corresponding equation of motion (1.10), are extremely

convenient for obtaining the crucial a priori estimates in our analysis, when a

satisfies assumption (1.3). In the earlier literature in which only the special

case 4 E was studied, the normalization

a(t) - a. + A(t) 0 4 t <

a(O) 1, a, > 0, A e W2 ,1 (0,-), A strongly positive was used.

In another noteworthy special case, when a(t) - exp(-Pt), (1.9) is equivalent

to the third order partial differential equation

uttt + Putt ""(U)tx + u)(X ) x +gt+

studied by Greenberg (8].

In this paper we show how one may deal with Equation (1.9) directly and

establish existence of solutions without the assumption 0 4'. We will consider in

detail the case where the boundary of the body is free of traction which leads to

boundary conditions

(1.18) o(t,O) 0(t,1) - 0, 1C < t < •

Other types of boundary conditions will be discussed in Section 4. The change of

variable (superposition of a rigid motion)

t T I
(1.19) u(t,x) -u(t,x) + m0 + m1t + f f f g(s,y)dydsdT

0 00

shows that without loss of generality we may assume

1
(1.20) f g(t,x)dx - 0, < t < 0o

0

1
(1.21) f u(t,x)dx - 0, -< t ( ( o

0

.| : -5-
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Of the body force g we require

g(t,.),gt (t,.),g x(t,*) in C((--,-); L (0,1)) L2((-mw); L (0,1))

( g(t,x)=g 1 (t,x)+g 2 (t,x) with g tt(t,.),g2tx(t,') in L ((- ,-);L 2(0,1)).

As noted above, despite the presence of viscous dissipation, it is not to be

expected that a global smooth solution to (1.9), (1.11), (1.18) will exist unless

the amplitude of waves remains small. Consequently, one may only hope to obtain

global existence results under the restriction that g(t,x) be appropriately

"small". We "measure" g(t,x) by

df1 2 2 2 1 2+ 2 2+2

(1.23) G def sup f {g +gt+q&)(t,x)dx + f tg g+gxgltt +g2tx dxdt .
(-oc) 0 -D 0

Our main result is

Theorem 1.1. Under assumptions (1.3), (1.4), (1.5), (1.6), there exists a constant

P > 0 with the following property: For every g(t,x) on (-c,=) x (0,1] which

satisfies (1.20) and (1.22) with

2
(1.24) G 4

and for any v(t,x) on (- ,0] x [0,1], with v(t,*), vt(t,-), v (t,-), vt(t,-),
Vt x tt

Vtx(t,o) , Vxx(t,-) , Vttt(t,*), vttx(t,e) , Vtxx(t,), V xxx(t,) in

2 2 2
C((-,0J; L (0,1)) r L2((- ,0J; L (0,1)), which satisfies Equation (1.9) together

with the boundary conditions (1.18) for t 4 0, there exists a unique u(t,x) on

(-.,c) x [0,11, with u(t,.), u t(t,.), u x(t,s), u tt(t,o), u tx(t,o), uxx(t,°),

u ttt(t,e), u ttx(t,*), u txx(t,-), u (t,.) in

C((--,-); L 2(0,1)) n L 2((-,); L 2(0,1)), which satisfies (1.9), (1.11), (1.18),

as well as (1.21). Furthermore,

u .(1.25) (t,),u (t,),Ux(t,*),Ut(t,.),Ut(t,),U(t,) uni 0 t + .
t x tt tx xx [0,11

The proof of the above theorem employs the general strategy developed in

[2,6,7]. We first establish, in Section 2, the existence of a local solution,

-6-



defined on a maximal interval (-w,T 0), with the property that when T0 < a

certain norm blows up as t t T Then, in Section 3, we show that, due to viscous

dissipation, the afforementioned norm remains uniformly bounded on the maximal

interval, provided that (1.24) holds with V sufficiently small. In particular,

T o = and the smooth solution exists globally.

In the final Section 4, we have collected information on various extensions of

the above results. We show how one can handle boundary conditions other than

(1.18). We indicate how alternative sets of assumptions on v(t,x) and g(t,x)

lead to variants of Theorem 1.1 rendering information on the smoothness of

solutions. Finally, we explain how the present techniques may be used to establish

existence theorems for the equations of multidimensional viscoelasticity as well as

abstract integrodifferential equation in Hilbert space.

2. Local Solutions. In this section we establish a local existence theorem on a

maximal interval. It is more convenient to work with Equation (1.14) to which, as

we have seen, (1.9) may be reduced. Also we shall impose here boundary conditions

(2.1) Ux(t,0) = ux(t,1l) - 0, t 0 0 ,

which, though apparently stronger than (1.18), are actually equivalent to (1.18), as

will be shown in Section 3. Finally, we temporarily strengthen assumption (1.4)

into

(2.2) o(e) e C 3 o(0) = 0, p'(e) ) c > 0, - < e < l

On the other hand, assumptions 4'(0) > 0, X'(0 ) > 0 and the positivity of the

kernel a(t) will not play any role in this section.

Theorem 2.1. Let u0(x), uox(x), uoxx(X), uoxxx(x), uj(x), ulx(x),

uixx(x) be in L2(0,1) and assume

(2.3) Uox(O) = uOx(1) = 0, Uix(O) = UIx(l) = 0

Moreover, let h(t,x) be defined on [0,-) x [0,1] with h(t,*), h t(t,'), h x(t,e)

in C([O,-); L2 (0,1)) and h(t,x) h1 (t,x) + h2 (t,x), hltt, h2 tx in-

-7-



2L2L ([0,-); L2(0,1)). Then there is T0 , 0 < T0 ( , and a unique function

u(t,x) C (O,T0) x (0,1]), with u ttt(t,.), u ttx(t,*), u txx(t,-), u xxx(t,-) in

C([O,T]; L2(0,1)), for every 0 < T < To, such that u satisfies (1.14) on

(0,T ) x [0,1] together with initial conditions (1.15) and boundary conditions

(2.1) on (0,T0 ). Furthermore, if TO ( ,

1I 2 xU2x 2 2)Ux~

f {u 2(tx)+u2 (t)+U 22(tx)+u (t,x)+u (tx)+u (t,x)+u 2t(t,x)
(2.4) 0 t tt tx xx ttt

2 2 2
+ U (t,x)+u 2 (t,x)+U 2 (t,x)ldx + -, as t t T

ttx txx xxx -

We note that h(t,x) and u0 (x), u1 (x), defined by (1.12), (1.13) with

v(t,x) and g(t,x) as in Theorem 1.1, do satisfy the assumptions of Theorem 2.1.

The proof of Theorem 2.1 which is a variant of the local result in [6] will be

based upon the Banach fixed point theorem. We begin with some preparation. For

M,T > 0, we let X(M,T) denote the set of functions w(t,x) on (0,T) x [0,1],

with w(t,.), w t(t,.), wx (t,*), wt (t,-), W tx(t,.), W xx(t,), wttt(t,.), Wttxt,.),

w txx(t,-), w xxx(t,.) in L ([0,T]; L 2(0,1)) which assume initial data

w(0,x) = u0 (x), wt(O,x) = u1(x) and boundary conditions wx(t,0) = wx(t,l) = 0,

t e [0,T], and satisfy

1 2 2 2 2 2
(2.5) ess-sup f {w t (t,x) + w tx(t,x) + w tx(t,x) + W x (t,x)ldx 4 M

[0,T] 0

For w(t,x) e X(M,T), (2.5) and the Poincare inequality yield

(2.6) w 2 (t,x) + w2x(t,x) + w 2(t,x) ( M , 0 4 t ( T, 0 4 x ( I
x tx xx

We now consider the map S : X(M,T) + C 2([0,T] x [0,1]) which carries

w(t,x) c X(M,T) into the solution u(t,x) of the linear equation

t
(2.7) u -t '(w )U = f a'(t - T))(w ) dT + h

0

satisfying initial conditions (1.15) and boundary conditions (2.1). we note

1 .- 8-



that P'(Wx(t,x)) is C1  smooth and 4p'(wx)tt, v'(wx)tx are in r

L U[0,T]; L2 (0,1)). Furthermore, if f(t,x) denotes the right-hand side of (2.7),

then f(t,.), f t(t,°), f x(t,o) are in C([O,T]; L2 (0,1)) and f(t,x) = f1(t,x) +

f2 (t,x) with flt' f2tx in L2 ([0,T]; L2(0,1)). It then follows by standard

theory that u ttt(t,O), u ttx(t,O), u txX(t,) and uxxx(to) are in C([O,T];

L2 (0,1)). Our strategy is to show that, under proper conditions, S has a unique

fixed point in X(M,T) which will obviously be the solution to (1.14), (1.15),

(2.1) with the desired properties.

Lemma 2.1. When M is sufficiently large and T is sufficiently small, S maps

X(M,T) into itself.

Proof. We fix n > 0 and apply to (2.7) the forward difference operator A,

(Aw)(t) def w(t + n) - w(t), thus obtaining

Autt - O'(wx)Auxx = A4(wx)uxx + A'(wxlAuxx

(2.8)
t

+ a a'(t - T)*(W ) xdT + Ah
0B

we multiply (2.8) by Autxx  and integrate over 10,s] x [0,11, 0 4 s < T. After

appropriate integrations by parts, we divide through by n2 and we let n +0. We

give the details of the computation of one term:

s sl
f f AUtAU dxdt =-f f Au Au dxdt
00 00 ttx tx

(2.9)
1 1f A s,x)dx + f ( o,x)dx

0 0

whence

(2.10) lim 1 AuttAutxxdxdt f . 2 (sx)x + I f u2  (0,x)dx
n+O T 0 0 0 ttx

where

1-9-
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(2.11) Uttx(O,X) = ,P(UO0 Wx, + hx (O,x)

we apply the same procedure to the remaining terms of (2.8) thus obtaining

11f 2 (sxd 1 X)2 (sxd 1 f 2 Oxd
(2.12) futt~x ) 2 f .' '(wxssx ut~~x ) x u ,x~d0 0 0 t

+2- I(u (x))u 2(x)dx + fI ~( )w u 2dxdt
2 f Ox lxx 2 f P(x tx txx

0 0 0

s1 s 1
+ ff oll~w)ww u u dxdt +fjf' l~w) u dd

xtx xx xxttx 00tx p" w ux t

+ r f v,"(w x)w tiuix t dxdt - fal(s)*(u Ox(x)) xU tx(s,x)dx
x t0 xx0t O x

1 S1
+ f a'(O)4'(u Ox(x)) xu 1x (x)dx + f f a"(t)(u Ox) xu tdxdt

0 0

I ss
-f u (S,x) f a'(s - t)i*(w (t,x)) dtdx + f f a'(O)Opw ) u dxdt

0 txx 0x x 0 0 x x txx

S 1 si1
00 f txx 0 a"(t - T)*(Wx x dTdxdt + f h 2tx uttx dxdt

1 1
h it (s,x)u tx(s,x)dx + f h1l (O,x)u 1x(x)dx + f f h it u txdxdt

0tx 0 0x 0 ltx

We now differentiate (2.7) with respect to t and x to obtain

t

(2.13) u t (W xw)u tx - P"It(ux)u OxU 1 x f { (w )wXu1 dT

t
-a'(t)tp(u ) + .f a'(t - T) p(W) dT + h

Ox x 0XTX t

-10-



u (W p()u -I~ ~u 2~x - f lip (w ) w u )dT
(2.14) ttx x x xOx 0 x x xx Tr

t
=1a'(t -T)*(w ) xdT + h

from which we easily get the estimates

(21)f u 2t(s,x)dx - 6 f p'(w (s,x)) 2U2 (s,x)dx
(21)0 t0 x txoc

(6f IONu Wx) 2 U2 W xd

0 Ox Ox 1 x~

* {6 (i ,(w )w u I dt) dx + 6 f al(t) 2 VU(x))2dx
O 0 xt xt0 O

* { f sa'(s - t)*(Vr ) dt) 2 dx + 6 f fs h 2dxdt,
o 0 x tx 0 0

1 22 d 2 2 sxd
(2.16) f 'Px(s 1 x)) u "x(~xd - 5 tx SX

(5 f pl-(u(W) 2 u dx + 5 f if [(v"'(w )w u] dt) 2dx
o x x 0 0 xt

+ 5 f I f sa'(s - t)*(w ) x dt} dx + 5 f f sh xdxdt
0 0 ax 0

Let us set

2 1~ 2 +2 2 2 2 2
N f 1. +U U0 + U0  + uxx + U1 + U1 + l x

+ sup f h 2(t,x)+h 2(t,x)+h 2(t,x))dx + ff {b2 4-h 2 dxdt
f0m) t x 00 Itt. 2tx



(2.18) V 2  sup j fu2  (t,x) + u 2t(t,x) + u 2x(t,x) + ux2x(t,x))dx
[0,T] 0 ttx txx xxx

Then, by virtue of (2.5), (2.6), the Poincare inequality and Schwarz's inequality,

every term on the right-hand side of (2.12), (2.15), and (2.16) can be majorized by

one of p(N), Tq(M)V2 , p(N)V, Tq(M)V, T2q(M)V2 , TI2p(N)V, T2q(M), Tp(N), where

p(o) and q(*) are locally bounded functions on [0,-). Thus, combining (2.12),

(2.15) and (2.16) and using (2.2), we arrive at an estimate of the form

(2.19) V2 4 c{p(N) + Tq(M)V
2 + p(N)V + Tq(M)V + T

2q(M)V2

+ T1/2p(N)V + T2q(M) + Tp(N))

Applying the Cauchy-Schwarz inequality,

(2.20) {1 - cTq(M) - 2cT 2q(M) - cTp(N) -1/2v 2

4 c{2p(N) + cp2 (N) + q(M) + T2q(M) + Tp(N)}

Thus, if one fixes M2 A 8c{2p(N) + cp2(N) + q(M)} and then selects T so small

that, at the same time, cTq(M) + 2cT 2q(M) + cTp(N) </4 and

cT 2q(M) + cTp(N) 4 M2/8, (2.20) yields V2 4 M2 and u(t,x) e X(M,T). The proof

of the lemma is complete.

We now equip X(M,T) with the metric

I1

(2.21) p(u,u) = max If [(uu ) + (u - + (u - 2l(t,xdx}
tOT 0t tx tx xx xx10,T] 0

where u, u e X(M,T). on account of the lower semicontinuity property of norms in

Banach space, X(M,T) is complete under p.

Lemma 2.2. For M sufficiently large and T sufficiently small, the map

S : X(M,T) + X(M,T) is a strict contraction with respect to the metric p.

Proof. Let w(t,x), w(t,x) e X(M,T). We set u = Sw, u = Sw, W = w - w,

U = u - u. Then U(t,x) is the solution of the problem:

•. -12-



t

(2.22) -t ;(W )U xx A(t,x)u xxf W dT
0

+ fJ a'(t - )~'w)W + B(T,X)Z W ]dr
x xx xx x

(2.23) U(0,x) = 0, U t(0,x) =0, 0 4 x 4 1

(2.24) UX(t,O) = U (tv ) = , 0 4 t 4 T

where

OI (W W (tX) x ( (txx

(2.25) A(t,x) W (t,x) Z w (t.x)W (tx Wx(t )

Pll~ x (tx)),W (t,x) = (t,x)

- I( Wtx) -tx w'( (t(t))

(2.26) B(t,x) Wvx(tix) Z- t,tx) ' wtx)*wt)

*p"(w (t,x)) W (t,x) W w(t,x)
x

Furthermore,

!k U ttt ~~-~(Wx )U = A(t,x)u tx W x + p (W x)W U x+ '(W )u W t

(2.27)xtxxtxxx

-C(t,x)w ,W~ + a'(O)*P'(w )W~ + au(O)B(tux)w~W~

t t

+ f a"(t -T)4'(W )W dT + f a"(t - t)B(T,x)w;x W xdr

00

where

-13-



(w (t,x)) x
w (tx) W w(t,x,

(2 .28 ) C(t ,x ) w - w, (tx)

1 "'(w (t,x)) ,w (t,x) = w (t,x)

Multiplying Equation (2.27) by Utt and integrating over [0,1) x [0,s],

0 < s 4 T, we obtain, after certain integrations by parts,

2 I f (w' (+xX))U2 (s,x)dx

(2.29) 2 0 2 f
0 0tx

s 1 s 1

+ f f Au txxWxU ttdxdt + f fp"(w)W tx UttUxxdxdt

00 t t0 0

s 1 S 1

• f f W"(Wx)UxWtUtdxdt -f f tx xUttdxdt

0 0 0 0

s 1 s1
+ a'(0) f f *'(w )W U dxdt + a'(0) f f Bw W U dxdt

00 x xx tt 00 xxx tt0 0 0 0

si t
+ f f U f a"(t - T)4'(w )W dTdxdt

0 0 tt 0 x xx

sI t
+ f f U f a"(t - T)Bw w drdxdt

00 0 xxx

Moreover, from (2.22) we get

22 1 1 s 2
(2.30) f (w (s,x)) U (s,x)dx t3 tt(s,x)dx+3 f Au x (f W dT) dx

0 (23) 00 0 0 Tx

1 s

+ 3 f {f a'(s - t)[lP'(w )W + Bw W ]dt}2 dx

0 0 x x xx x

Combining (2.29) with (2.30) and using (2.2), (2.5), (2.6), the Poincare irequality

-14-
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and the Cauchy-Schwarz inequality, we arrive, after a long computation, at an

estimate of the form

(2.3) {U t(s,x) + u 2(s,x) + U2(s,x)dx

( (T + T 2) max f {W (t,) + W (t,x) + W2 (t,x)ldx
[0,T] 0 tx xx

+ m f U 2(t~) +U 2(t,x) +U2(t~x)}dxdt0 0 t xx

where m depends solely upon a~t), M, and bounds of 0, * and their derivatives

on the interval E-M,M]. In order to assist the reader to see how (2.31) is derived

from (2.29), (2.30), we give the details of the estimation of one of the most

complicated terms on the right-hand side of (2.29):

si t

(2.32) f f utt f a"(t - T)W'(w )W dTdxdt
0 0 0 x xx

s 15s1 t

U2tdxdt + 2c f f {f a"(t - T)*'(w )WxdT}2dxdt
00 00 0

2sl

2ff Utdxdt
00

s t t 1

+ 2C f {f Ia"(t - t)Idt}{f ja"(t - r)l f '(w )2W2 dT}dxdt
0 0 0 0 x

sl
, f f U2tdxdt0 0 t

+ 2es{f la"(T)IdT}21 max V'(e)2}{ sup f W (t,x)dx}
0 [-M,MI 10,T) 0 x

From (2.31) and Gronwall's inequality we deduce

W-



max f fu t(t,x) + U 2 (tx) U2 (t,x)dx
(2.33) [0,Tt 0 tx xx

(T + T2)e rmax f (W 2t(tx) + W 2(t,x) + W (t,x)ldx

[0,T] 0 tx xx

21
Thus, when T is so small that (T + T )exp(mT) < - , (2.33) yields

4

(2.34) p(Sw,Sw) < 2 p(w,w), for w,w e X(M,T)

and the proof of the lemma is complete.

Proof of Theorem 2.1. From Lemma 2.2 and the Banach fixed point theorem we deduce

the existence of a unique fixed point of S in X(M,T), for conveniently large

M and appropriately small T, which will be the unique solution of (1.14), (1.15),

(2.1) on (0,T] x (0,1]. Let T0 < - be the maximal interval of existence of a

solution u(t,x) to (1.14), (1.15), (2.1) with u t(t,*), U x(t,*), u tt(t,.),

u tx(t,*), u xx(t,e), u ttt(t,e), u ttx(t,e), U txx(t,e), u xxx(t,o) in

02
L ([0,TJ; L (0,1)) for every 0 < T < TO . If T0 < - and (2.4) is not satisfied,

we can extend u(t,x) up to t = To  so that u(t,x) C 2([O,T0 ] × [0,1).

Moreover, by weak convergence in L2(0,1), u(T0 ,x), ux(T0 ,x), Uxx(Tox), uxxx(To,x',

ut(T0 ,x), Utx(T0 ,x), utxx(T0 ,x) are all in L 2(0,1). But then, using u(T0 ,x),

ut(T0 ,x) as new initial data, we may extend u(t,x) to some interval

(T0 ,T0 + c], beyond T0 , and this is a contradiction since [0,T 0 ) is assume,

maximal. The function u(tx) will be a solution of (2.7), with w(t,x) E u(t,x),

and thus, as noted above, u ttt(t,o), u ttx(t,), u txx(t,.), U xxx(t, ° ) are all in

C((0,T]; L2(0,1)), for every T in (0,T0 ). The proof is complete.

3. Global Solutions. Our objective in this section is to show that when the bod.

force is "small" the maximal interval of existence of solution to (1.9), (1.11),

(1.18) is (- ,w) and solutions decay as t + -. For that purpose, the dissipative

character of viscosity, embodied in assumptions (1.3) on the relaxation function i,

-16-



plays the crucial role. Assumption (1.3) will be exploited here through its

consequences recorded in the following

Lemma 3.1. There exist positive constants 8, y such that

s ,t 2 t

(3.1) f [f a(t - t)w(T)dT] 2dt 4 8 f w(t) f a(t - T)w(T)dTdt

s t 2 t

(3.2) f [f a'(t - T)w(T)dT] 2dt 4 y f w(t) f a(t - T)w(T)ddt

for any s e 1-,) and every w(t) e L 2(-,s).

The proof can be read off, for example, from Lemma 4.2 of (7], recalling that

a(t), a'(t), a"(t) are in L (0,-), and that (by assumption (1.3))

a(t) - a exp(-t) is a positive definite kernel on [0,m) for some a > 0. As a

matter of fact, we may use

(3.3) {f a(t)idt})2 +4 {f Ia(t)Idt}2
0  0

(3.4) Y 1 {f la'(t)ldt}2 +4 {f la(t)Idt}2
0

Another important implication of a combination of (1.3), (1.5) and (1.6) is the

property:

Lemma 3.2. Let k(t) be the resolvent kernel of the operator

t
(3.5) P'(0lW(t) + f a'(t - T) '(0)W(T)&d

that is, k is the unique solution of the linear Volterra equation

(3.6) 1p'(O)k(t) + f a'(t - T)'(0)k(tdt = -'(0)a'(t)
0

Then k(t) e I (0, ).

-17-



The proof of Lemma 3.2 follows by a standard argument: Since

a'(t) e LI(0, ), the Paley-Wiener theorem states that k(t) e L (0,-) if -nd only

if

(3.7) P(Z) def .''(3.7) P(z) d ;'(0) + '(0)a'(z) = X( 0 ) + (0)za(z)

does not vanish on the half plane Rez ; 0. (In (3.7) z = C+iC and A denotes

the Laplace transform).

A simple calculation yields

(3.8) ReP(z) = X'(0 ) + '(0)ERea(z) - *'(0) Ima(z)

(3.9) ImP(z) = P'(0)gRea(z) + 1(0) Ima(z)

On account of (1.3), (1.5) and (1.6),

(3.10) ReP(& + iO) = x'(0) + (O)a() > 0, 0 < E <

As regards ImP(z), since by the strong positivity of a(t), Rea(i ) > 0, we have

IMP(0 + i;) = 1(0) Rea(i;) is positive for ; > 0 and negative for 4 < 0. On

the other hand, ImP( + 10) = 0, 0 4 E < -. Furthermore, since a'(t) e L (0,-),

we deduce by the Riemann-Lebesgue lemma that lim ImP(z)

= V'(0) lim Ima'(z) = 0, uniformly on Rez ) 0. But IP(z) is harmonic onlzl "
Rez > 0 so that, by the maximum principle, we conclude that ImP(z) > 0 on

{z = + iI ) 0, > 0} and ImP(z) < 0 on {z = E + i It ) 0, < 0}. In

conjunction with (3.10) this yields P(z) $ 0 on Rez ) 0 and the proof of the

lemma is complete.

Before proceeding to the proof of Theorem 1.1, let us show that the boundary

conditions (1.18) are equivalent to

(3.11) u (t,O) =  u (t,1) = 0, - < t < •
x x

We multiply (1.8) by *(e(t,x)) t , integrate over (-m,s), - s < ®, and use the

positivity of a(t) to get

5

(3.12) f x(e(t,x)) (e(t,x)) tdt 4 0, - < s < ®, x = 0,1

or



(3.13) T(e(s,x)) 0 0, - < s < ®, x = 0,1

where

e

(3.14) T(e) def x(n) '(n)dn•

0

On account of (1.5), (1.6), T(e) > 0 on (-6,6)\{01, 6 positive small. Thus

(3.13) yields e(s,x) = 0, -0 < s < -, x = 0,1, and (3.11) has been established.

Proof of Theorem 1.1. By virtue of (1.4), (1.5), (1.6), there are positive 6 and

K such that

(3.15) ,P'(e) > i, *'(e) > K, x'(e) > K, let 4 6

We modify p(e) outside the interval (-6,61 so that (2.2) be satisfied and we

let u(t,x) be the solution to (1.9), (1.11), (3.11) on a maximal time interval

(-,T0).

For T e (-',T ), we set
0

(316 U(T) = sup f u 2(tx)+u (tx)+u (tx)+u (tx)+u 2(tx)
(-,T] 0

2 2 2 2 2
+ Ux(t,x)+u tt(t,x+utxtx)+u (t,x)+ux(t,x))dx

T i
,r 2222 2 2 2 2 2 2

(u +u+u 2 +u +u +u +u +u +u2 +u }dxdt•
0 t x tt tx xx ttt ttx txx xxx

Our strategy is to show that there are positive constants v, X, V 4 6, such that,

if

U(3.17) u x(tx) l2 + jU tx(t,x)i2 + u xx(t,x) 2 I V 2, < t C T, 0 4 x C 1,

then

(3.18) U(T) 4 KG

where G is defined by (1.23). Once this claim has been established, we may

complete the proof of the theorem by the following line of argument similar to that

previously used in (6]: First we note that, by virtue of our assumptions on

v(t,x), (3.17) is automatically satisfied, as a strict inequality, when t is

-19-



sufficiently small. Next we observe that, in view of the Poincare inequality

Iu x(t,x)l2 + Iu (t,x)I 
2 + lu xx(t,x)1 

2

(3.19)
1 1

(f fIux(t,y)2 + Iu (t,y)f2 + (U (t,y)l 2dy
0 x txx xxx

and when G 4 V with p < V2/K, (3.18) implies (3.17) (as a strict inequality).

Thus, for G < p < v2/K, (3.17) and (3.18) will hold for every T on the maximal

interval of existence in which case Theorem 2.1 (in particular (2.4)) implies

T = . From (3.16), (3.18) we have u(t,*), u t(t,O), U x(t,-), u tt(t,-),

u (t,), u xx(t,.), u ttt(t,O), u ttx(t,-), U txx(t,.), u xxx(t,e) in L2(

L2 (0,1)) fl L ((-,c); L2 (0,1)). Now u(t,-), ut(te), Ux(t,.), utt(t,*), utx(t,-),

2 2u (t,O), u (t,-), u (t,.), U (t,-) in L2((- ,i); L (0,1)) implies
xx ttt ttx txX

(3.20) u(t,'),u t(t,*),u x(t,*),u tt(t,*),u tX(t,'),u xx(t,") L ) 0t +,

which, in conjunction with u x(t,o), u tx(t,-), U xx(t,-), U ttx(t,e), U txx(t,e),

u xxx(t,.) in L((-,); L2(0,1)), yields (1.25).

It thus remains to verify (3.18) under the assumption (3.17). We fix s in

(-*,T]. The first estimate is obtained by multiplying (1.10) by (ux)tx,

integrating over (-,s] x [0,1] and integrating by parts. The reader should be

cautioned that in these and the many integrations by parts which follow, there are

several possible ways to carry out such integrations. The ones selected in this

section are chosen for the purpose of using the same estimates when considering the

boundary conditions (4.1), (4.2) below (see Theorem 4.1). The result of this

calculation is

i2
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2 2

(3.21) f '(u(sx))u (s,x)d + 2 f x.(Ux(S'X).(Ux(SX11Ux(s,xldx
0 XX

s1 t
+ f f o(ux) f a(t - T),(Ux1)xddxdt

I 1

=2 f f x"(u)u dxdt- f f {x'(ux)*"(Uxl

-"(u ),'(u lOuu 2dxdt - f q(s,x*(u (S,X)x)dx
0

s91
+ L f t(x~d d

To motivate our next estimate, we differentiate (1.10) with respect to t and

then integrate formally by parts to get

t
(3.22) U = X(Ux tx + f a(t - T)*(u ) dT + g

ttt x tXX TTX g

We would like to multiply (3.22) by *(ux)tt x  and then integrate over

( -,s] x [0,1] in order to arrive at an estimate analogous to (3.21).

Unfortunately, this operation is not legitimate since *(ux)tt x  does not

necessarily exist as a function. Consequently, same as with the derivation of

(2.12) in Section 2, we shall have to work first with a discrete analog of (3.22)

and then pass to the limit. To this end we apply to (1.10) the forward difference

operator A, of step q > 0, thus arriving at

t
(3.23) Au Nx(u x + f a(t - T)A*(u X ) dT + Ag(32)Att Xx - x Tx

We now multiply (3.23) by Ai~lUx ), we integrate over (-,s] x [0,1], we perform
a no m tegrat3ons by arts x tx d

a number of integrations by parts, we divide through by n-, and we pass to the

limit as q + 0. The outcome of this tedious but straightforward calculation is

-21-



412 12
(324 .( fSX) (sxd + ~.fx(~~f~'us,x))u (s,x)dx
(324 0 t 'Uxsx)P( txx

1 si t
+ un ~- fA (u) f a(t - T)tn(u) dTdxdt

rj+O r - 0 -W

5 s f1  u 2  
-12

- I -'(x )u u dxdt - f e(u (s,x))u (s,x)u (s,x)dx

+ f 41111'(u )u 3 u dxt +1 u (
f tx ttx 2 ~f (x x'

- x'(u~ )1(u )J~u2dxdt

si
+ j I x"(u x )'P(u) x '(u x )4"(u x)}U x u txu x dxdt

si1
+ I (I x"'(u )9'(u )-x"9(u )VIp(u )-x'(u )'*""(u )}U2u u dxdt

x xt tx x x tx x x

sis

f g (Sx"u)*(u () dx + dxt-ff*(u udxdt

xt x tx f xxt tx

s s

sif f 9 2x)(u x)) t dx+Id

The reader should note that because 4*(u x) t does not exist as a function, one
X tx

cannot, after dividing (3.23) by n, pass to the limit as q + nl under the

integral on the right hand side of (3.23). However, the limit of every other term

in (3.23) exists as n + 0, and therefore,
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t
lim f a(t - T)A(u ) (T,x)dT

exists for t e [0,T], 0 < x 4 1. The same comment (arrived at by the same

reasoning) applies to the limit as n + 0 of the multiple (quadratic form) integral

on the left hand side of (3.24). It is important for the subsequent estimates (in

particular (3.27), (3.28)) to know that this limit exists and is finite (in fact

positive). This is important for the concluding part of the proof of Theorem 1.1

(see argument preceding (3.37) below).

To get our next estimate we multiply by u txx the identity

t t
(3.25) a(0l)A(u x ) = -f a'(t - T)A*(U x ) dT + f a(t - T)AJ(Ux ) TxdT

and we integrate over (-,s] x [0,1]. We majorize the right-hand side of the

resulting equation by first applying Schwarz's inequality and then using (3.1) and

(3.2). The result is

a(0) ffu A4p(u ) dxdt(3.26) a 40 txx x x

S{f f u dxxadt}'{y f f Ai ux) f a(t-T)A*(u ) dTdxdt}{fMfutxx dd) YffA x x x- 0 -0 0 X _ -00

1 u2 dxdt 1/2 6at-T)A*jU ) dTdxdtl 1/2.

0 txX0 XT

Dividing through by n (the step of the forward difference operator A), letting

n 0, and using (3.15) and the Cauchy-Schwarz inequality, we end up with the

estimate

-23-
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1s 2Y s It

(0) sf 2 t.d - y -tT ( ddd
(3.27) 2 a(0) f f f(u )tx x dTdxdt-0 -W 0 -W

lim ff A,(ux~tx f a(t- )A(U dTdxdtKa(O) x+O n 2 0 XTX

s1
( - a(0) J f "(Ux)U txuxxUtxxdXdt

Next we integrate over (- ,s] x [0,1] the square of (3.23), we use (3.1),

then we divide through by n2  and we let n + 0 to get

s 12 s 22
(3.28) f f uttddt - 4f f x'(u)utxx dt

-m 0 -

-48 lim - f f A*(u)t f a(t-T)A*(U ) dTdxdt
n+On 2 _00 - X TX

8 1 2. ,2 2 2 g5dx1
4 f f X"(u 2 u 2 u 2 dxdt + 4 f f g2dxdt

0 xoxx 0

To the above estimate we append

S12 si1 1

(3.29) f f u2 dxdt f f u u dxdt +f u (Bx)u (sx)dx
t tx " ttt txx 0 tts txx

which can be derived from

s 1 si 1

(3.30) f f Autdxdt = f f AuttAu dxdt - f Aut(sx)AUx(s,x)dx
0 -" 0 - 0 xx 0.

by passing to the limit. In turn, (3.30) can be easily verified via integrations by

p arts.

-24-
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-- R

We now differentiate (1.9) with respect to t,

t
(3.31) uttt (u x)tx + f a,(t - T)(u x) TXdT + gt

and we easily get the estimate

12 12

(3.32) uttt(s,x)dx - 5 f P'(ux(s,x))u sxxS,x)dx(33) 0 0

0 txx
~1

0 (-,s] 0

2 2
4 5 f p"(u (s,x))u (s,x)u (s,x)dx

0 x tx xx
01

2 222 2

5(f Ia'(t)Idt} sup f *"(u) uu 2dX 4 (s,x)dx
0 (-,a] 0 0

The final set of estimates is derived by the followinq procedure: we

differentiate Equation (1.9) with respect to x and then add and subtract

appropriate terms to arrive at

t
(3.33) 'p Ouxxx +fa(- )'O xxx d U t [PI(ux ;(luxxx

~o'(0)Uxx + f a'(t - rlq'10)u dr = - t;'(u ) - (0u

* t

"x x 
- I a'(t - tl[J'(x ) "'O( xxxdt

t
fa(t - T)"(U )u dr - g - X(t,x)- l xxx

Thus, if k(t) is the resolvent kernel of the operator (3.5),

t

(3.34) '(0)u (t,x) = X(t,x) + f k(t - T)X(T,x)dT
Lxxx

i -25-



1l 1
r'()2 f 2  (s,x)dx 4 2 f X2(s,x)dx(3.35) 0 xxx 0

~1
+ 2{f fk(tfldt} 2 sup f X2(t,x)dx

0 (- ,s1 0

(3.36) ',(0)2 fs f u 2 dxdt 4 2{1 + [f Ik(t)ldt] 2 } fs fl X2 (t,x)dxdt
xxx 0

We are now ready to prove (3.18) under assumption (3.17). First we note that,

on account of (3.15), U(T) can be majorized, with the help of the Poincare

inequality, by the supremum over (--,T] of an appropriate linear combination of

the left-hand sides of the estimates (3.21), (3.24), (3.27), (3.28), (3.29), (3.32),

(3.35) and (3.36). On the other hand, each term on the right-hand sides of these

estimates can be majorized, by means of the Cauchy-Schwarz inequality and (3.17), by

either cG, or O(v)U(T), or eU(T) + c(c)G for any C > 0. We thus arrive at an

estimate of the form

(3.37) U(T) f {O(V) + O(e)}U(T) + c(C)G

from which one can get (3.18) by fixing v and £ sufficiently small. The proof

of Theorem 1.1 is complete.

4. Remarks and Extensions. When the endpoints of the body are pinned, in the place

of (1.18) we have boundary conditions

(4.1) u(t,0) = u(t,1) = 0. -< ( t < .

Similarly, when one endpoint (say x = 0) is pinned and the other is free,

(4.2) u(t,O) = 0, o(t,1) = 0, _w < t c a o

In these cases no rigid motions are possible so we don't have to assume (1.20) nor

should we expect that (1.21) will generally hold.

When the body force satisfies (1.22) with g2 (t,x) Z 0, all estimates derived

in Section 3 for the case (3.11) are also valid under (4.1) or (4.2). We thus have
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Theorem 4.1. There is w > 0 with the property that for every q(t,x) on

x [0,1], which satisfies (1.22) with g2 (t,x) E 0 and (1.24), and any

v(t,x) on (--,0] x [0,1], with v(t,,), v t(t,-), V x(t,.), vtt(t,.), Vtx(t,o),

v (t,-), v ttt(t,-), V ttx(t,-), V txx(t,e), v (t,*) in
2 L22

C((--,0]; L (0,1)) r L ((- ,0]; L 2(0,1)), which satisfies (1.9) together with

(4.1) (or (4.2)) for t 4 0, there exists a unique u(t,x) on (-m, ) x (0,1],

with u(t,e), u t(t,-) , u x(t,-) , u tt (t,*), u tx (t,e) , u xx (t,O) , u ttt (t,O) , u ttx (t,s) ,

u (t,*), u Ct,') in C((-,0); L 2 (0,1)) r L2 L2(00), which satisfiesUtxx t'' Xxx

(1.9), (1.11) and (4.1) (or (4.2)). Moreover, (1.25) holds.

As history and body force get smoother, solutions become smoother. Regularity

results can be obtained by establishing a priori estimates for derivatives of u of

order 4, 5, etc. Such estimates fall into three categories: those derived by

differentiating (1.10) a number of times with respect to t and/or x and then

multiplying by the appropriate multiplier (recall the derivation of (3.24)); those

derived by expressing certain derivatives in terms of other derivatives through the

equation itself (compare with (3.32) or (3.35)); those obtained through

interpolation (such as (3.29)). The program is feasible because, since the problem

is autonomous (kernel of convolution type), differentiations with respect to x

or t essentially preserve the form of the equation (compare, for example, (3.22)

with (1.10)). Time derivatives of u satisfy the same homogeneous boundary

conditions as u, at x - 0,1, so that differentiating the equation with respect

to t is generally a better prospect than differentiating with respect to x. In

any event there are so many possible comlbinations of differentiations, integrations

by parts, etc., that one may establish several variants of regularity theorems.

Here is a typical one:

Theorem 4.2. Suppose the assumptions of Theorem 1.1 hold and, in addition, P and

are C4  smooth, v tttt(t,'), vtttx(t), v ttxx (t,.), V (t,') v (t,-) are

2 22
in C((-,Ol; L (0,1)) 'T L ((.1,]; L (,1)) and
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gtt (t,1*),9tx (t,-),g xx (t,e) in CW-,-);L 2(0, )

L2- L 2(0,I))
(4.3)

g(t,x) = g1(t,x) + g2 (t,x) with glttt(t,-),g2ttx(t,.)

in L 2(-,) L2(0,1)).

Then, when (1.24) is satisfied with v sufficiently small, the solution u(t,x) of

(1.9), (1.11), (1.18) possesses utttt (t,-), utttx(t,.), u ttxx(t,), U txx(t,.),

u (t,e) in C((-a,-); L 2(0,1)) L 2((-,-); L2 (0,1)) and

(4.4) u (t,*),u (t,*),u (t,*),u (t,,) unif. 00, t + C
ttt ttx txx xxx 15,11

It is noteworthy that the extra derivatives (4.3) of q that are required in

order to guarantee smoothness of the solution need not be "small". This is due to

the fact that all energy integrals are quadratic forms in the higher order

derivatives of u, with coefficients that are solely controlled by V of (3.17).

As we have seen in Section 3, V is controlled by U which, in turn, is controlled

by G.

We close with remarks on the multidimensional situation. The configuration of

the body is now a bounded set fl C in with smooth boundary 8S2 and the

displacement is an n-dimensional vector field u. A typical problem is to determine

u(t,x), - < t < -, x e D, such that

3 2u n ao t1i
(4.5) 2- " a x-- + f al(t - T) - dT} + 91' i ....,nt2 J- 1 _

at x i=

< t <, x

(4.6) u(t,x) - v(t,x), < < t 4 0, x E

(4.7) Uft,X) - 0, - < t < *, X e3,

where 4 and I are known, smooth, matrix valued functions of the matrix V p

(strain), 2(t,x) is an assigned body force and L(t,t) is the given history.

-26-



we assume 0(0) T (O) =0, Bet

3$0(e) 3i. (e)

(4.9) E ijkle) = Cijk (e) - a(0)D.ijkX(e)

and impose the symmetry restrictions

(4.10) Cijkl = Ck.ij, Dijk = Dklij

Assumptions (1.4), (1.5), (1.6) will here turn into coercivity conditions for the

partial differential operators associated with Cijk(0), Dijk£ (0) and Eijk£(2).

Under boundary conditions (4.7), coercivity is equivalent to strong ellipticity

(4.11) C ij(0)ikj > 0, = =
i,j,k,. i k I

(4.12) D ij(O) > , I = II = 1

i,j,k,i

(4.13) i Eijkt(0)&i X > O, i f = = 1
i,j,k,t

Assumptions (4.10),. (4.11), (4.12) and (4.13) can be motivated by Mechanics.

However, in order to carry through the analysis, we require an additional condition

whose physical interpretation is less clear. We define

(4.14) F= ( D WE. (e)
jktpqr ijk - ipgr

and assume that F is symmetric,

(4.15) Fjktpqr =Fpqrjk,

and that its value at e = 0 corresponds to a coercive operator. We note that in

the special case * = T the resulting F automatically satifies the above

conditions.

Under the above assumptions it is possible to establish the existence of

globally defined smooth soluitions to (4-5), (4.6), (4.7) by the procedure followeli

here in the nne-dimensional case. The strateo, is to establish a rriori eneray
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estimates for the L 2 (Q) norms of derivatives of u of sufficiently high order

(depending upon n) that would guarantee, via Sobolev's lemma, pointwise bounds

analogous to (3.17). The calculations, however, are very long.

It is easy to discern the essential ingredients in the proofs and it thus seems

feasible to develop an existence theory for the history-value problem in a class of

abstract nonlinear integrodifferential ectuations

2 t
(4.16) d = A(u(t)) + f a'(t - T)B(u(T))dT + g(t)

dt -

on a Hilbert space H, where A and B are nonlinear operators defined on a scale

of Hilbert spaces (abstracting the scale of Sobolev spaces [wk'2(,)]n) and

satisfying appropriate symmetry and coercivity conditions. We remark also that the

general and physically interesting case in which the stress-strain relaxation

function is a n x n matrix a (in (4.5) a = aI) is considerably more

complicated than the situation considered here.

4
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